

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Components

Component based approaches to web development have been around for some time, however more formalized systems like Brad Frost’s Atomic Design [http://bradfrost.com/blog/post/atomic-web-design/] have become more popular recently. Thinking about a web page as a system of discrete components enable us to approach building more granularly and maintain consistency across a whole project. The components are the building blocks that we craft sites with and maintiaining this approach allows us to use Kalastatic to quickly build out prototype pages and automagically generate a styleguide for your project.

In Kalastatic a component consists of a folder containing:

	A SASS file

	All the styles that apply to this component.

	A Twig template

	All the markup needed for the component

	Twig logic and/or placeholder variables that will get populated with content on build.

	A json file

	Dummy data used to populate the Twig template for the styleguide.

	Can also be used to hold non-dummy static data like strings of text or images that won’t get dynamically populated by other methods.

How to add a new component

We suggest sorting your components into folders that demarcate their complexity based on Atomic Design [http://bradfrost.com/blog/post/atomic-web-design/]. However Kalastatic doesn’t enforce this.

To create a new component, make a new folder inside the components directory. Let’s use ‘button’ as an example.
Inside the button folder create three new files:

	button.scss

	button.html.twig

	button.json

Create Component

We provide a handy command create-component or cc that takes care of some of generating these files (and soon providing boilerplate content for valid json, and pre-configured kss headers).

	Command

kalastatic create-component <objectToCreate> [otherObjects...]

	Alias

kalastatic cc ...

	Options

kalastatic cc --directory=path/to/where/you/want/

Usage

kalastatic cc atoms/links
kalastatic cc atoms/link
kalastatic cc --directory=path/you/want/the/files/to/go atoms/link
kalastatic cc atoms/button molecules/article-teaser organisms/anotherone

Mass Add Components

You can add multiple components from a text file by using cat:

	Add the following to a components.txt file:

atoms/links
atoms/buttons
molecules/cta
molecules/tout

	Execute the following command:

kalastatic cc --directory=path/you/want/the/files/to/go 'cat components.txt '

Component Sass

Adding a KSS comment to the top of your component’s Sass file will enable KSS to build out the styleguide including our new component.

/*

Button

A button for our website

Markup: button.html.twig

Styleguide content.button

*/

For more indepth documentation on KSS and it’s conventions see Styleguide TODO: make internal links work.

Add styles that are specific to this button component. We suggest using the fugly selector method because it promotes extensibility and reusability but this is not required by Kalastatic.

%button {
 padding: 2em 1em;
 background-color: $brand-primary;
 color: #fff;
 border-radius: 20px;
 }

 a.button,
 button,
 input[type=submit] {
 @extend %button;
 }

Now that our component’s Sass file exists, it’s now a good idea to include it from your main.scss so it’s styles get included in the build.

@import '../components/atoms/button/button';

Component Twig

Your component’s Twig file contains the markup and variables/logic needed to display the component. For more information on this see the Twig documentation [http://twig.sensiolabs.org/doc/2.x/]

{{ text }}

Template Engine Extensions

The extension of the file determines what template engine to use. If the file extension is .twig, it will use Twig. If you use .html, it will see that the HTML is already processed, and will not use any template engine. Using .html.twig as the file extension will process the file with Twig as usual, but give an added benefit of allow the component to be consumed by the Drupal theme layer.

Component json

The component’s json file contains json data that is used to populate the variables in the Twig file. The top level keys should match the variable names in the Twig template. The Kalastatic build will fail if your json is not valid. Note that when you change json data, you need to stop and restart Kalastatic to see the changes come through in the browser. This is a known quirk that will get fixed in future versions.

{
 "text": "Click me, slowly.",
 "url": "page.html"
}

How do you include another component?

Some components are made up of a collection of other components. Acheiving this in Twig is easy with the include directive [http://twig.sensiolabs.org/doc/2.x/tags/include.html].

{% include '@kalastatic/path/to/template.html' with {'foo': 'bar'} %}

When do you use only and why?

When including templates within other templates it’s advisable to use the only declaration for passing variables.

{% include '@kalastatic/path/to/template.html' with var only %}

This is a form of dependecy injection that has a number of benefits:

	It saves memory

	Makes builds faster

	Keeps components self contained and therefore portable/reusable.

When the only directive is not used, the entire variable scope is passed to the template. While this may be needed/desirable in some cases it’s generally considered bad practice.

Namespaces and Relative Paths

Relative paths can sometimes break in Twig. It’s recommended to use namespaces so that the paths are referenced correctly. For more information about the Twig namespaces, visit Prototyping.

Extending components

A component can also use the Twig extends directive to extend a Twig block. For more information see the Twig extends documentation [https://twig.sensiolabs.org/doc/2.x/tags/extends.html].

Getting Started

This outlines how to get started with using KalaStatic from a fresh start.

Dependencies

	Node.js [https://nodejs.org] 4, 6 or 7

	Through nvm [https://github.com/creationix/nvm], run nvm use

Install

$ npm install kalastatic --save

Usage

Content Files

Construct your source files, using the template engine name in the file extension. The following example uses the Pug [https://pugjs.org/] template engine, but others are available (Twig [https://github.com/twigjs/twig.js], Mustache [https://github.com/janl/mustache.js/], etc).

src/index.html.pug

pretty: true
title: Hello World!

doctype html
html(lang="en")
 head
 title= title
 body
 h1= title

Configuration

KalaStatic can be configured through a kalastatic.yaml file. The default options are as follows:

The base directory of where the base KalaStatic lives.
base: .

What BrowserSync should consider the index page.
bsIndex: 'index.html'

What BrowserSync should consider the webroot when running KalaStatic.
Defaults to the KalaStatic destination directory.
bsWebroot: ''

Whether or not to open the browser when initially running Kalastatic.
bsBrowser: false

The directory (from base), where the source content files live.
source: src

Where the files will be built out to.
destination: build

The options to pass off to the Metalsmith plugins when building, keyed by plugin name.
pluginOpts: {}

KSS Styleguide Configuration
kss:
 # Set the path to a custom KSS Builder
 builder: null
 title: "Styleguide"
 homepage: styles/homepage.md
 css: ../styles/main.css
 source:
 - src/components/
 - src/styles/

Environmental configuration can be used with…

kalastatic.develop.yaml

Where develop is the BRANCH environment variable. This environment variable name can be chaned by setting the KSTAT_CONFIG_ENVIRONMENT_VARIABLE environment variable.

CLI

KalaStatic can be used as a command line interface. The following are some of its commands:

Build

Runs through the KalaStatic build tasks and outputs to the destination folder.

node_modules/.bin/kalastatic build

Start

Starts up a development server through BrowserSync [https://www.browsersync.io/] in order to watch and serve KalaStatic. Changes you make to the source will automatically reflect in the browser.

node_modules/.bin/kalastatic start

Scripts

While you can run kalastatic as a CLI application, it is recommended to run the above commands through the use of npm scripts [https://docs.npmjs.com/misc/scripts] in package.json:

"scripts": {
 "test": "kalastatic build",
 "start: "kalastatic start"
}

Then you can simply run the following commands to interact with your project:

npm test
npm start

Conventions

It’s easier to collaborate if we share a vocabulary.
Here are some conventions we’ve found useful for maintaining parallel development, and ensuring that the prototype work dovetails neatly into the production code with minimal—if any—refactoring.

Text nodes

Anything that would be a text node in html.

 "text": "A text node"

Head tags

All those H’s

 "title": "Água Viva"

Links

A simple link, anchor tags illustrate the use of “text”, we use “url” for most urls (aside from src in images).

 "link": {
 "text": "Água Viva, by Clarice Lispector",
 "url": "https://en.wikipedia.org/wiki/Clarice_Lispector#.C3.81gua_Viva"
 }

Iterables

When we create collections of things, we like to wrap them in an array named “items,” the less guesswork the better.

"items": [
 {
 "text": "Água Viva",
 "url": "https://en.wikipedia.org/wiki/Clarice_Lispector#.C3.81gua_Viva"
 },
 {
 "text": "Where Were You at Night and The Via Crucis of the Body",
 "url": "https://en.wikipedia.org/wiki/Clarice_Lispector#Where_Were_You_at_Night_and_The_Via_Crucis_of_the_Body"
 }
]

Images

Images can be simple…

"image": {
 "src": "/kalastatic/images/image_name.jpg"
}

or quite complex:

{
 "src": "http://placehold.it/450x325",
 "width": "450",
 "height": "325",
 "alt": "this is some alt text",
 "srcset": {
 "(max-width: 479px)": {
 "1x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
],
 "2x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
]
 },
 "(min-width: 480px) and (max-width: 767px)": {
 "1x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
],
 "2x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
]
 },
 "(min-width: 768px) and (max-width: 991px)": {
 "1x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
],
 "2x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
]
 },
 "(min-width: 992px) and (max-width: 1199px)": {
 "1x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
],
 "2x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
]
 },
 "(min-width: 1200px)": {
 "1x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
],
 "2x": [
 "http://placehold.it/450x325",
 "http://placehold.it/900x650"
]
 }
 }
}

Integrations

KalaStatic can integrate with multiple frameworks and platforms.

Drupal 7

Using Twig in D7

Twigshim [https://github.com/kalamuna/twigshim] is a small helper module [https://www.drupal.org/docs/7/extending-drupal-7/installing-contributed-modules] for Drupal 7 [https://www.drupal.org/drupal-7.0] that pulls in Symfony [https://symfony.com/]’s Twig [http://twig.sensiolabs.org/] library via Composer [https://getcomposer.org/]. It is an “API module”, which means it doesn’t do anything on its own; it just exposes a twigshim_render() function that accepts a Twig template file path and an array of template variables. Developers can use this function to bypass Drupal’s standard render pipeline and leverage Twig templates instead. There are various ways you can hook into the render pipeline and override it. The most common way is to define or override a theme implementation [https://api.drupal.org/api/drupal/includes%21theme.inc/function/theme/7.x] at the level of nodes, fields, blocks, or anything else.

One increasingly popular approach uses Paragraph [https://www.drupal.org/project/paragraphs] entities to chunk up the editorial content creation experience. It brings a component-friendly page-building technique to the CMS side of things, making it really straightforward to create one-to-one mappings between Kalastatic components and the CMS. Here’s an example of how to integrate a Twig template with Paragraphs. Let’s start with this markup:

<div class="container tout__image-left shadowbox__right text-center">
 <div class="row">
 <div class="col-sm-6 text-left">
 {% include "@kalastatic/components/atoms/image/image.twig" with image only %}
 </div>
 <div class="col-sm-6 block__body">
 <h3>{{ title }}</h3>
 <p>{{ text }}</p>
 {% include "@kalastatic/components/atoms/link/link.twig" with link only %}
 </div>
 </div>
</div>

As you can see, the template uses variables to render our desired content. hook_preprocess_HOOK() [https://api.drupal.org/api/drupal/modules%21system%21theme.api.php/function/hook_preprocess_HOOK/7.x] is the standard way to adjust template variables in Drupal. But since these variables really won’t get used by any other modules, we typically just prep them immediately before the call to twigshim_render(), passing in a fully formed set of data for use in the template. For example:

/**
 * Overrides the theme function for the "Example" Paragraphs bundle.
 */
function mytheme_paragraphs_item__example(&$vars) {
 $template_path = 'molecules/tout__image_left/tout__image_left.html.twig';
 $template_vars = [];
 foreach (['title', 'text', image', 'link'] as $field) {
 $content = &$vars['content']["field_$field"];
 if (!empty($content)) {
 $template_vars[$field] = render($content);
 }
 }
 return twigshim_render($template_path, $template_vars);
}

And here’s an example where we actually just pull our variable data directly from the component’s JSON file defined in Kalastatic:

/**
 * Overrides the theme function for the "Example" Paragraphs bundle.
 */
function mytheme_paragraphs_item__example() {
 $component = 'molecules/example/example';
 $file = kalastatic_path_to_kalastatic() . "/src/components/$component.json";
 $json = file_get_contents($file);
 $template_vars = drupal_json_decode($json);
 return twigshim_render("$component.html.twig", $template_vars);
}

Now let’s throw one more wrinkle of complexity into this swirling vortex of fun. We’ve created a helper module called Kalagraphs [https://github.com/kalamuna/kalaponents] that automates some of the work for you. It provides a basic Paragraphs bundle that represents a flexible component type. Kalagraphs processes the field data and passes it into the Twig template you specify in the admin configuration. This all adds up to a high velocity / low overhead approach to “componentising” your page content, and makes it “cheap” to generate new components in Drupal.

Kalagraphs takes care of mapping these basic Drupal fields to their template counterparts:

	title

	text

	image.src

	link.text

	link.url

Kalaponents also provides a few hooks if you need to make adjustments along the way. Implement hook_kalaponents_data_alter() if you want to modify the template variables before they’re passed on to Twig. And implement hook_kalaponents_markup_alter() if you want to adjust the markup returned from Twig (e.g., to wrap the output in a section).

Drupal 8

While KalaStatic is a standalone application, it can be integrated with Drupal 8. This allows the use of KalaStatic templates and components from Drupal, giving a Drupal site a living prototype and styleguide. To have Drupal 8 use templates and components from KalaStatic, consider the following…

Components Module

The Components module [https://www.drupal.org/project/components] will allow Drupal and Twig to share the same @kalastatic namespace, making including KalaStatic Twig templates a lot easier.

	Install the Components module

	Add the following to your theme’s .info.yml file:

component-libraries:
 kalastatic:
 paths:
 - path/to/kalastatic/src

	Reference Twig templates from KalaStatic using @kalastatic:

{% include "@kalastatic/components/molecules/button/button.twig" %}

Template Inclusion

Once the Components module is set up, you can start including templates from KalaStatic in your Drupal theme. In some cases, components may require special naming for the variables. In this case you would use the include with keyword [http://twig.sensiolabs.org/doc/2.x/tags/include.html].

An example of this would be in your theme’s page.html.twig file. To include a button component with the title being the page title:

{% include "@kalastatic/components/molecules/button/button.twig" with {title: page.title} only %}

See the Components section for more information on using components.

Debugging

Use Twig’s dump() [https://twig.sensiolabs.org/doc/2.x/functions/dump.html] function to help map variables from Drupal:

{{ dump() }}

Drupal Filters

Twig Filters [http://twig.sensiolabs.org/doc/2.x/filters/index.html] allow modifying the variables before they’re output to the page. The Drupal 8 Twig Filters [https://www.drupal.org/docs/8/theming/twig/filters-modifying-variables-in-twig-templates] add a few more Drupal-specific filters. While these are not provided by default in KalaStatic, you can make them available to the prototype.

	Install Twig.js Drupal Extensions [https://github.com/kalamuna/twig-drupal-filters]

npm i twig-drupal-filters --save

	Add the filter definitions you need to kalastatic.yml

Allows changing some of the plugin options.
pluginOpts:
 metalsmith-jstransformer:
 engineOptions:
 # Twig options.
 twig:
 # Add Drupal 8's Twig filters.
 filters:
 clean_class: twig-drupal-filters/filters/clean_class
 safe_join: twig-drupal-filters/filters/safe_join
 t: twig-drupal-filters/filters/trans

Deployment

After running the KalaStatic build process with kalastatic build, you will find the compiled prototype and styleguide files in the build directory. Since these are just static files, deployment is simple as you will just be pushing up the files. There are a number of Continous Integration [https://en.wikipedia.org/wiki/Continuous_integration] services and build tools that can help you do this…

Tools

	grunt-build-control [https://github.com/robwierzbowski/grunt-build-control]

	gulp-git [https://www.npmjs.com/package/gulp-git]

	Deployer [https://deployer.org/]

Services

	Travis [https://docs.travis-ci.com/user/deployment/]

	Circle [https://circleci.com/docs/2.0/deployments/#nav-button]

The following is an example of using grunt-build-control with Circle:

	Install grunt-build-control with npm i grunt-build-control --save

	Add Circle deployment defintion to circle.yml:

machine:
 node:
 version: 6.1.0
deployment:
 examplehost:
 # Deploy only when:
 # 1. The branch isn't a feature branch (no /).
 # 2. The branch name is less then or equal to 11 characters long.
 branch: /^[^./A-Z]{0,11}$/
 commands:
 - git config --global user.name "Kala C. Bot"
 - git config --global user.email "kalacommitbot@kalamuna.com"
 - echo -e "Host *drush.in\n\tStrictHostKeyChecking no\n" >> ~/.ssh/config
 - npm run deploy

	Create a deployment .gitignore-deploy file

node_modules

	Add the package.json deployment script:

"deploy": "npm run deploy:gitignore && git add -A && npm run deploy:push",
"deploy:gitignore": "cp -f .gitignore-deploy .gitignore",
"deploy:push": "grunt buildcontrol:deploy"

	Add your project to CircleCI [https://circleci.com/docs/2.0/first-steps/#adding-projects]

	Make sure the SSH keys are set up [https://circleci.com/docs/2.0/project-walkthrough/#deploy-through-circleci]

Prototyping

A website prototype can be any mock-up or demo of what a website could look like when it goes live. A living prototype is a prototype that’s actively used throughout the lifecycle of the website. Even after the site is deployed, the prototype lives on as an active demonstration of what the website looks like.

The following features and conventions come together to allow the creation of a living prototype.

Conventions

Meta-Data

Meta-Data is way to give files generic data that helps describe the content you’re presenting. Depending on the defining method, meta-data can exist almost anywhere. The following are a few ways to introduce meta-data.

Local Front-Matter

Introduce YAML [http://yaml.org] Front-Matter to define local variables. These are useful when you would like to output some dynamic data. The YAML is wrapped in --- to distinguish it from the file’s content.

example.html.twig

name: Linus Torvalds
languages:
- PHP
- Perl
- Python

<h1>{{ name }}</h1>

output

<h1>Linux Torvalds</h1>

Meta-Data JSON Files

In some cases, YAML Front-Matter can sometimes cause conflicts with the template engine that’s being used to process the content. Twig, for example, does not support YAML Front-Matter. In this case, you will want to introduce a meta-data JSON file. Having The metalsmith-metadata-files [https://github.com/kalamuna/metalsmith-metadata-files] plugin will inject sister JSON files into the main file.

example.html.json

{
 "name": "Linus Torvalds"
}

example.html.twig

<h1>{{ name }}</h1>

output

<h1>Linux Torvalds</h1>

Global

You can add global meta-data through the use of the metalsmith-metadata-convention [https://www.npmjs.com/package/metalsmith-metadata-convention] plugin and .metadata files.

authors.metadata

Stephen King:
 birthdate: 1947
J. K. Rowling:
 birthdate: 1965
William Shakespeare:
 birthdate: 1564
Nora Roberts:
 birthdate: 1950

This list of authors is loaded into a global metadata variable named "authors".

Template Engines

There are many different template engines out there, and Kalastatic has the ability to use them all through the use of JSTransformers [https://github.com/jstransformers/jstransformer]. Naming a file by the template engine’s extension will have it process with the given engine. The following is an example of using Twig [http://twig.sensiolabs.org]:

example.html.twig

name: Linus Torvalds

<h1>{{ name }}</h1>

output

<h1>Linus Torvalds</h1>

See JSTransformers [https://github.com/jstransformers] for a list of available transformers, and metalsmith-jstransformer [https://www.npmjs.com/package/metalsmith-jstransformer] to see what’s possible. The following is a list of transformers that are available through Kalastatic:

	pug [http://npm.im/jstransformer-pug]

	twig [http://npm.im/jstransformer-twig]

	browserify [http://npm.im/jstransformer-browserify]

	scss [http://npm.im/jstransformer-scss]

	md [http://npm.im/jstransformer-commonmark]

Assets

Third-party vendor libraries and assets can be bundled as static assets through the metalsmith-assets-convention [https://github.com/robloach/metalsmith-assets-convention] plugin. It will deploy any local assets you name in .assets files:

source: public
destination: .

Copy all the public files into the build directory.

Concatenating Files

Concatenating files allows you to put a whole bunch of files together, potentially saving HTTP requests. This is handy if you want to bundle some JavaScript or CSS together. There are a few different ways to do this:

.concat files

The metalsmith-concat-convention [https://github.com/robloach/metalsmith-concat-convention] plugin will concatenate files based on the use of .concat files:

src/scripts.js.concat

files:
- script1.js
- script2.js
insertNewLine: false

// This is the collection of all scripts.

Browserify

Browserify [http://browserify.org/] is a JavaScript package that lets you require('modules') in the browser. To use Browserify in KalaStatic, use the .browserify file extension:

src/scripts.js.browserify

var firstscript = require('./script1.js')
console.log(firstscript)

Collections

Collections are a method in which to group different files together in an ordered array, like blog posts. It allows looping through the collection to generate indexes, along with next/previous links between them. The metalsmith-collections-convention [https://www.npmjs.com/package/metalsmith-collections-convention] allows the definition of these collections through the use of .collection files:

articles.collection

pattern: 'articles/*.md'
sortBy: date
reverse: true

This is the collection of articles that will become available through the global metadata variable "articles".

Namespaces

Register different paths as Twig Namespaces [http://symfony.com/doc/current/templating/namespaced_paths.html] to allow easy referencing when using Twig’s include function [https://twig.symfony.com/doc/2.x/tags/include.html].

Use a Twig namespace through include(), prefixing the name of the namespace with a @:

{% include '@kalastatic/path/to/template.html' with {'foo': 'bar'} %}

The default namespaces are as follows, which are relative to KalaStatic’s src directory:

	@kalastatic - .

	@atoms - components/atoms

	@molecules - components/molecules

	@organisms - components/organisms

To introduce additional namespaces, add the definitions to your kalastatic.yaml file:

pluginOpts:
 metalsmith-jstransformer:
 engineOptions:
 twig:
 namespaces:
 customNamespace: components/customNamespace
kss:
 namespaces:
 customNamespace: components/customNamespace

Adding Page

	Assigning layout

Fonts

	Font face helper mixin?

Images

- Pathing issue

Extending

While KalaStatic comes with a common set of functionality, it is possible to add new features to it, depending on what you want to add. This section will touch on how to extend it.

Twig

You can extend Twig [https://twig.sensiolabs.org/doc/2.x/advanced.html] to add new filters and functions. In the following example, we add clean_id (a filter) and attach_library (a function) from the twig-drupal-filters package [https://github.com/kalamuna/twig-drupal-filters].

	Add the Node.js package

npm i twig-drupal-filters --save

	Add the twig filter and function mappings to kalastatic.yml

Allows changing some of the plugin options.
pluginOpts:
 # The layouts will live in the templates directory.
 metalsmith-jstransformer:
 # Options that are applied to just specific engines.
 engineOptions:
 # Extending Twig
 twig:
 filters:
 clean_id: twig-drupal-filters/filters/clean_id
 functions:
 attach_library: twig-drupal-filters/functions/attach_library

	Use the new filter/function in Twig

{{name|clean_id}}
{{ attach_library('mytheme/mylibrary') }}

SASS

Third-party SASS components can be brought into the styleguide and prototype by:

	Install the component through a package manager

npm i bootstrap-sass --save

	Include the component path in kalastatic.yaml

Allows changing some of the plugin options.
pluginOpts:
 # The layouts will live in the templates directory.
 metalsmith-jstransformer:
 # Options that are applied to just specific engines.
 engineOptions:
 # SASS settings.
 scss:
 includePaths: [
 "node_modules/bootstrap-sass/assets/stylesheets",
]

	Use the new components in a SASS file

@import "bootstrap/buttons";

KalaStatic

Kalastatic is a prototyping framework and static site generator.

	Easy installation, with minimal dependencies

	Produces documented component library

	Output production ready styles that can be ingested by other systems

	Browsersync:

	Built in webserver

	Live reload - saving files reloads the browser

	Remote device access - load your local on a mobile device!

	Node:

	Automated download of front end frameworks and other dependencies

	Automated Deployments

	Twig, or your template engine of choice:

	Easy creation of extendable template variations with inheritance

	Convenience Utilities:

	Cache busting

	Deep linking (url fragments)

	Character limit filters

	Splits CSS files for IE compatibility

At Kalamuna we use Kalastatic to put into practice atomic web design principles to produce a living styleguide/component library that can be used to guide back-end implementations in a framework-agnostic approach.

It integrates tightly with Drupal 7 and 8, effectively sharing twig templates between the styleguide, prototype and the CMS.

Kalastatic serves as a point of convergence between front-end development, back-end development, and content strategy. Ultimately it facilitates putting design first, and this in front users for testing, and stakeholders for meaningful and timely feedback.

Benefits

Kalastatic brings a few benefits from clients, agencies, user experience experts, frontend and backend developers, and content strategists.

Clients

	Small uncertainties in communication get ironed out much earlier.

	Real, demonstrable progress happens early.

	Many concerns can be addressed during the project, instead of waiting for certain milestones.

	The whole process becomes more participatory.

Agency, PMs, Account Managers

	The client never sees a barebones generic site during demos.

	From first contact, their branding, typography and colors are in place. This avoids uncertainty, stress and education.

	Specific client feedback happens earlier on assets that are cheaper to fix as a prototype than a back-end build.

User Experience

	We can test assumptions with stakeholders earlier.

	We can “show not tell” more effectively.

	It’s easier to communicate with stakeholders about abstractions when we are looking at something concrete.

Frontend Dev

	Can work in tools commonly used in the trade.

	Now in control of markup, as opposed to working around it.

	Can be involved earlier, and stick around later in the process.

	We begin working through responsive issues as soon as we begin styleguiding, this results in more successful first passes, less suprises, and better decisions about our responsive/adaptive patterns.

Content Strategist

	Doesn’t have to wait for the CMS to be in place to see content in-situ.

	Integrations with third party content staging systems like prismic [https://prismic.io] gathercontent [https://gathercontent.com]

Backend developers

	Documented components can clarify implementation needs in code conversation with the front-end team.

	Json mock data tells me what needs to be made available to templates.

Features

Styleguide

What’s a styleguide?

A web Styleguide offer a way of ensuring consistency between brand, design and code.
Herein we are looking documenting every component and its code on the site in one place to ensure “same-pagey” communications between designers, front end developers and developers.

The pattern portfolio expresses every component and layout structures throughout the site.
It articulates the atomic design structure, and is used to illustrate the project’s shared vocabulary.

The Kalastatic Styleguide

Website styleguides serving both as pattern library, but can also be serve as brand styleguide, to ensure consistency and conformity in the use of brand assets. The styleguide not only ensures that new front end development can follow established patterns, but also facilitates the creation of on brand ancillary digital properties. Its compiled CSS and JS assets can be referenced and consumed by third party services as well to create harmonious expressions across multiple systems.

Kalastatic uses kss-node [https://github.com/kss-node/kss-node] as the basis for its styleguide.

Kalastatic uses the KSTAT-KSS-Builder [https://github.com/kalamuna/kstat-kss-builder] to generate the styleguide, which extends some of the documenation features to make it better suited for documenting colors, and other brand-related style concerns.

Prototype

To provide working, responsive prototypes, we use metalsmith [https://metalsmith.io] and a bevvy of other tools [https://github.com/kalamuna/kalastatic/blob/master/package.json]

Prototyping is most useful to consider the components with layouts, side by side with other elements. Where the styleguide documents components in isolation, prototyping helps us see all the bits in context, and even develop behaviors (js) and other integrations, before we dive into CMSs and app-frameworks.

Prototypes can be created at will, and draw upon the family of defined components in the system to build out pages, complete with custom content.

Resources

A list of links and further readings for KalaStatic-related developments.

Twig

	http://twig.sensiolabs.org

	http://www.annertech.com/blog/things-learned-drupal-twig-slack-volume-1

	https://slackinvite.me/to/drupaltwig

	https://drupalize.me/videos/twig-basics?p=1899

	https://drupalize.me/tutorial/twig-drupal?p=2512

	https://drupalize.me/search?query=twig

	https://www.drupal.org/docs/8/theming/twig

SASS

	http://sass-lang.com

JavaScript

	https://es6.io/

Development

On the backend, Kalastatic is built from a number of technologies. This section will cover how Kalastatic is built, developed, and managed.

Version Strategy

In order to not break existing installs and uses of Kalastatic, Kalastatic uses a MAJOR.MINOR.PATCH version strategy through Semantic Versioning [http://semver.org].

	MAJOR version when you make incompatible API changes

	MINOR version when you add functionality in a backwards-compatible manner

	PATCH version when you make backwards-compatible bug fixes

When installing, use the latest available version of Kalastatic:

npm install kalastatic --save

"dependencies": {
 "kalastatic": "^3.1.0"
}

To update Kalastatic, make sure to target the latest of your selected MAJOR release (3), bringing in the latest MINOR release. To upgrade to a MAJOR release of Kalastatic (4), make sure to read through the CHANGELOG.md [https://github.com/kalamuna/kalastatic/blob/master/CHANGELOG] to understand what changes you should be aware of.

Read more about semantic versioning in npm [https://docs.npmjs.com/getting-started/semantic-versioning] to see how to better target different versions of Kalastatic.

Node

KalaStatic uses Node.js [https://nodejs.org] to build out the front-end components needed. Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine that has a large open source package ecosystem named npm [https://www.npmjs.com/]. Due to Node.js’s use of JavaScript, there are a lot of front-end tools available for KalaStatic’s use.

See KalaStatic on npm [https://www.npmjs.com/package/kalastatic] for more information.

Metalsmith

Metalsmith [https://github.com/segmentio/metalsmith] is a pluggable static site generator that KalaStatic makes use of to build out its prototype. Due to Metalsmith’s pluggable architecture, KalaStatic has the ability to add functionality that doesn’t come out of the box with Metalsmith.

The following is a list of Metalsmith plugins that KalaStatic makes use of:

	metalsmith-assets-convention [http://npm.im/metalsmith-assets-convention]

	metalsmith-collections-convention [http://npm.im/metalsmith-collections-convention]

	metalsmith-concat-convention [http://npm.im/metalsmith-concat-convention]

	metalsmith-define [http://npm.im/metalsmith-define]

	metalsmith-env [http://npm.im/metalsmith-env]

	metalsmith-ignore [http://npm.im/metalsmith-ignore]

	metalsmith-jstransformer [http://npm.im/metalsmith-jstransformer]

	metalsmith-metadata-convention [http://npm.im/metalsmith-metadata-convention]

	metalsmith-metadata-files) [http://npm.im/metalsmith-metadata-files]

	metalsmith-paths [http://npm.im/metalsmith-paths]

For more information on how KalaStatic uses metalsmith, see the Prototyping section.

KSS

The responsibility of building out the styleguide is taken on by KSS [http://kss-node.github.io/kss-node/]. KSS is a documentation syntax in CSS that’s intended to have syntax readable by humans and machines, and create a “living style guide” from it.

For more information on KSS and how KalaStatic uses it, see the Styleguide section.

Twig and other Template Engines

KalaStatic allows use of a few different template engines, with a primary focus on Twig [https://twig.sensiolabs.org]. While Twig “is a modern template engine for PHP”, KalaStatic makes use of the the Node.js port of Twig [https://github.com/twigjs/twig.js]. This allows KalaStatic to build out the prototype and styleguide in Node.js, while allowing template parity with the the the native PHP version of Twig.

For more information on the template engines available, see the Template Engines section.

Browsersync

Browsersync [https://www.browsersync.io/] serves a local development environment and allows for live-reload workflow in front-end development. To run Browsersync through KalaStatic, use:

kalastatic start

Unopinionated

There are many ways to skin a cat. KalaStatic serves the needs of a minimalist platform to build a prototype and maintain a living styleguide. It does not enforce its methods, and its only goal is to serve a prototype and a styleguide. KalaStatic is agnostic to your personal choice of frameworks and tools.

Styleguide

Styleguiding allows you to both have a broad overview of the vocabulary that comprises your project’s design language, while at the same time allowing you to gather information about each component in an isolated setting. It facilitates conversations between stakeholders, designers, and developers while ensuring consistency between brand, design and code.

KSS basics

In essence KSS is a system for documenting site components.
Documentation lives in your css/sass files [https://github.com/kss-node/kss-node#kss-node] and is parsed by KSS into a styleguide.

Anatomy of KSS comments

A common KSS comment looks like this:

/*
button

A common button

Markup: button.twig

.active - The active state

Styleguide ui.button
*/

	The first line is a title.

	Below it description of the component.

	The markupo block is just a reference to the template file itself (kalastatic’s KSS implementation assumes twig)

	After that, each line represents a ‘class modifier’ so we represent style variations of the component in question.

	The “Styleguide” line represents where your component lives in the styleguide’s organizational structure, usually this goes two levels deep.

Custom KSS builder

In order to prove a more usable, comprehensive, and aesthetically pleasing Styleguide we developed a custom KSS builder [https://github.com/kalamuna/kstat-kss-builder]. It offers cleaner styles, inherit’s your site’s base styles and offers additional brand-guide elements (colors swatches, type speciments).

How do I create a top level section?

In the KSS documentation the final line Styleguide ui.button will automatically generate a section called ui in the styleguide.

But you may want to elaborate withn a cleaner name, and order within the styleguide.

To acheive this you create a standalone KSS comment (usually in your primary sass file) to create the section, e.g:

/*
UI elements

These are the project's user interface elements.

Styleguide ui
*/

How do I add a component to an existing section?

Any KSS Styleguide xxx.xxxxx directive that includes an existing section in the first-half of its identifier will be placed in that section e.g: ui.button will appear in the Styleguide’s ui section.

How do I document colors

Any Styleguide xx.xxxxxx section containing the string color-swatches will be processed as such. Here’s an example from Kalamuna’s own styleguide: Kalamuna Brand Colors [https://blog.kalamuna.com/kalastatic/styleguide/section-color-swatches.html]

/*
Brand Colors

These are the Progenity brand web colors.

$c__gray - #a8a8a8
$c__gray--mid - #6d6d6d
$c__gray--dark - #58595b
$c__gray--darker - #333
$c__green - #498c36
$c__coral - #f89e70
$c__gold - #fdb913

weight: -100

Styleguide color-swatches
*/

Naming conventions

Althought neither Node-KSS nor Kalastatic are agnostic to your naming conventions, we’ve found that splitting the styleguide into certain sections keeps things easy to navigate.

	Overview (this is the homepage.md file)

	Colors

	UI

	Content

	Figures

	Media

	Navigation

To order sections you can use the “weight: XX” kehy.

How do I document type

Aside from creating components to demonstrate your typography, we do have plans to implement more traditional type specimens [https://github.com/kalamuna/kstat-kss-builder/issues/15]

How do I reorder items in a section

Any KSS comment can take a weight key, the bigger the number the lower it appears in the list. Negative numbers can be used. The Overview section always appears first.

JSON Mock data via .json files

With node-kss, any JSON file sitting alongside the file containing the KSS documentation for a given component will be passed to the template specified in the comment assuming it has the same filename.

So assuming:

.
├── _button.scss
├── button.json
└── button.twig

and button.scss all have a Markup: key pointing to button.twig kss-node will parse button.twig using the data in button.json.

Adding additional js and css files to the styleguide

In Kalastatic we abstract configuring KSS via a kss key in kalastatic.yml
kss.css contains an array of css files to load and kss.js contains an array of additional javascript for KSS to load

Here’s an example

Settings for the Styleguide
kss:
 source:
 - "node_modules/bootstrap-sass/assets/stylesheets/bootstrap"
 - "node_modules/font-awesome/scss"
 - "web/sites/all/themes/custom/progmi/kalastatic/src"
 css:
 - "../styles/main.css"
 - "../styles/styleguide.css"
 builder: "path/to/custom-kss-builder"
 js:
 - "../vendor/matchHeight/dist/jquery.matchHeight-min.js"
 - "../vendor/jquery-once/jquery.once.js"
 - "https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
 - "../js/drupal_pre.js"
 - "../js/prg.js"
 - "../components/atoms/javascript_test/javascript_test.js"
 - "../js/drupal_post.js"
 - "../js/bootstrap-tab-history.js"
 title: "Progenity Living Styleguide"
 homepage: "styles/homepage.md"

Loading components from npm or composer packages

Any node or composer package can be included in the styleguide provided that it has KSS documentation (you can also provide the documentation in scss and change the markup key in the styles to point to the templates relative to your component’s KSS block .)

Component Libraries

Theoretically any component library/ or frontend framework can be documented via Kalastatic’s KSS documentation. Note that to be useful in production the templates would need to be wired up with variables beyond static content.

We’ve created component libraries, one for Bootstrap and the other for US Web Design Standards. They are for documentation only at the moment, since they do not include twig-variables to be integrated into CMSs or mock data via JSON.

KSS - Bootstrap

Bootstrap KSS Pattern Library [https://github.com/kalamuna/kss-bootstrap]

KSS - USWDS

US Web Design Standards KSS Pattern Library [https://github.com/kalamuna/kss-uswds]

 [image: _images/logo.png]Kalamuna Logo

KalaStatic

Facilitating the front-end experience

	Static site generation

	Prototyping component-design

	Styleguide building

GitHub [https://github.com/kalamuna/kalastatic/]
Get Started

	Home

	Getting Started

	Components

	Prototyping

	Integrations

 _static/comment-bright.png

_images/logo.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

